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ABSTRACT

A stochastic measure of sensitivity is developed in order to predict the effects of small random
blade mistuning on the dynamic aeroelastic response of turbo machinery blade assemblies. This sensitivity
measure is based solely on the nominal system design (i.e., on tuned system infor cation), which makes
it extremely easy and inexpensive to calculate. The measure has the potential to become a valuable
design tool that will enable designers to evaluate mistuning effects at a preliminary design stage and thus
assess the need for a full mistuned rotor analysis. The predictive capability of the sensitivity measure is
illustrated by examining the effects of mistuning on the aeroelastic modes of the first stage of the oxidizer
turbopump in the Space Shuttle Main Engine. Results from a full analysis of mistuned systems confirm
that the simple stochastic sensitivity measure predicts consistently the drastic changes due to mistuning
and the localization of aeroelastic vibration to a few blades.

INTRODUCTION

The current trend in the design of high performance propulsion turbomachinery has resulted in
systems designed for finite service life. These systems produce high power, in compact and light-weight
machines which require stringent safety factors and margins. In this environment, the design engineer is
faced with the task of accurately predicting system performance and dynamics. When designing for
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specific life and reliability goals, the structural dynamic behavior of the turbomachine is of paramount
importance.

The prediction of the dynamics of turbomachine rotors is further complicated by the presence of
differences in structural and material properties among the blades, a phenomenon commonly referred to
as mistuning. These differences arc unavoidable because they arise from manufacturing deviations and
in-service degradation. Such blade-to-blade discrepancies in structural properties are random by the nature
of their origin. In particular, they result in random blade-to-blade variations in blade natural frequencies,
known as frequency mistuning. Several studies investigated the influence of such mistuning on blade
assembly dynamic behavior and concluded that the potential exists for the effects of mistuning to be
significant and even drastic." However, mistuning is routinely ignored in most current analyses of the
dynamic response of turbomachinery, because (a) tremendous computational and analytical complexities
are involved in dropping the assumption of tuned rotors (that is, those having identical blades) and more
importantly, (b) the actual mistuning pattern and its standard deviation are generally not available until
the design and manufacture of the rotor is complete. Although the tuned rotor assumption is extremely
useful for the analysis of complex rotor systems such as high-performance turbomachinery, mistuned
rotors may exhibit dynamic characteristics that are vastly different from those of tuned rotors.

In particular, previous studies have demonstrated that mistuning, while generally improving the
aeroelastic stability of rotors', results in larger forced response amplitudes.''' Furthermore, it has recently
been shown that mistuning can alter the overall dynamics of rotors in a qualitative fashion. Namely, the
equally distributed vibration amplitudes that characterize tuned rotors have been shown to become
localized 1.1.78 by mistuning to a few rotor blades, tensed rogue blades. Thus, unlike the tuned rotor in
which all blades equally distribute the excitation energy among themselves, in a mistuned rotor with
localized modes, only a few blades may absorb most of the excitation energy, and therefore, experience
much larger amplitudes of vibration. Previous studies of localization" have shown that the amplitudes
of vibration of some mistuned blades can be several orders of magnitude larger than those obtained using
the tuned rotor assumption, depending on the strength of interblade coupling, the excitation frequency and
the number of blades. This has important implications in that the resulting energy confinement within
a few blades indicates a possible cause for rogue blade failure in rotors.

Prior work by the authors has led to an understanding of the phenomenon of aeroelastic mode
localization and the physical mechanisms behind it." In these studies, perturbation theories were used
to understand the effects of mistuning levels and various operating parameters, including unsteady
aerodynamic forces, on the distribution of vibration energy around the rotor. General conclusions were
reached regarding the sensitivity of turbomachinery rotors to blade frequency mistuning.

In the present paper, we introduce a sensitivity measure for predicting the potentially dangerous
effects of random blade mistuning on the aeroelastic vibration characteristics of high-energy turbines. The
measure of sensitivity we propose is formulated solely from the knowledge of the mean design properties
of the turbomachinery blades, i.e., from the tuned assembly dynamics. It is extremely simple to calculate
and does not require an aeroelastic eigenprobicm solution. This measure allows us to predict mistuning
effects essentially with a single scalar for each mode of vibration. Also, since the sensitivity measure we
propose is stochastic, it will allow the designer to assess the potential for rogue blade (i.e., large
amplitude) vibrations and drastic dynamic behavior changes due to mistuning, without specific knowledge
of the actual mistuning pattern that would result from manufacture or in-service degradation. Thus, by
evaluating the validity of the tuned rotor analysis and the need for a thorough mistuned rotor analysis, this
measure has the potential to become a valuable design tool.
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Figure I - Vibration amplitudes of
blades on a tuned rotor.

It is worth noting that the sensitivity methodology adopted in this paper differs from previous
statistical studies of the effects of nil stun ing. 10 ' Typically in those studies, the free or forced response
of mistuned assemblies is calculated and then statistically averaged over many realizations of mistuning.
This necessitates solving for the dynamic response of many mistuned systems --- a very expensive
(sometimes prohibitively so) procedure. In contrast, the present methodology offers a prediction of
mistuning effects that is based solely on tuned system information, which makes the approach very simple
and inexpensive. Indeed, the formulation developed here is conceptually similar to that used for
estimating the sensitivity of control systems to plant uncertainties and design changes. 1- " Although it
is clear that our sensitivity measure cannot provide as detailed information about the mistuned system
response as systematic Monte Carlo simulations do, its extremely low cost and simplicity make it a
valuable alternative at the design stage.

The specific rotor we analyze in this paper is the first stage of turbine blades of the high pressure
oxidizer turbopump (HPOTP) in the space shuttle main engine (SSME). The SSME rotor was selected
because it exhibits many of the characteristics of modern high performance turbomachinery designs.
These include high energy density, low blade aspect ratio, high aerodynamic loading and advanced
superalloy materials. In addition, the SSME turbopump turbines have been plagued with in-service blade
failures during development and operational experience. These blades have suffered both low-cycle and
high-cycle fatigue, which leads to the obvious presumption that significant dynamic loading exists.

In this paper we first review the results of previous investigations regarding the extreme sensitivity
of the acroelastic behavior of turbomachinery rotors to small mistuning. 9 Perturbation theories that yield
physical insights into the acroelastic localization phenomena are then summarized and the proposed
stochastic sensitivity measure is derived from these perturbation expressions. The performance of the
sensitivity measure is tested b y applying it to the SSME oxidizer turbopump turbine. The effectiveness
of the sensitivity measure is illustrated by comparisons between the predictions by the sensitivity measure
and the calculated localization.

THE MODE LOCALIZATION PHENOMENON

In usual engineering practice, bladed disks of
turbomachinery are designed to be composed of identically
constructed blades that are uniformly placed on a disk,
resulting in geometrically identical flow passages. Such
rotors possess perfect cyclic symmetry and are referred to as
tuned rotors. A well-known property of tuned rotors is that all
the blades on such a rotor vibrate with identical amplitudes
when subjected to a dynamic excitation which is also perfectly
cyclic symmetric. Thus the energy of excitation is shared
equally among all the blades, which obviously mi ►limizes
fatigue. Figure 1 schematically illustrates the vibration
amplitudes of blades on a tuned rotor, a pattern that is
generally the goal of the designer.

Manufacturing tolerances and in-service degradation destroy the cyclic symmetry of the rotor and
introduce blade-to-blade differences, known as mistuning. Such mistuning also results in blade-to-blade
differences in the amplitudes of vibration. If the level of mistuning is sufficiently small, then all or most
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blades still participate in the vibration, even though the amplitudes are not identical any longer, as shown
in the schematic of Figure 2.

Figure 2 - Vibration amplitudes of 	 Figure 3 - Localized vibration pattern of
blades on a rotor with very low	 a mistuned rotor.
mistuning.

However, if the level of mistuning is sufficiently high, there could be a drastic change in the
distribution of the vibration amplitudes. When this happens, vibration is constrained to very few blades
of the rotor, as depicted (schematically) in Figure 3. Thus, most of the energy of the excitation is
absorbed by a small number of blades, resulting in very high amplitudes which can lead to failure or
shortened life. This phenomenon is known as mode localization.

The onset of mode localization is determined by the sensitivity of the assembly dynamics to blade
mistuning. In general, this sensitivity is a function of the structural and aerodynamic characteristics of
the tuned system and of the actual distribution of mistuning that is present. However, in the design phase,
only the tuned system properties are known and the mistuning pattern and strength are unknown until the
rotor is manufactured. Moreover, the mistuning distribution that results from in-service degradation is
impractical to obtain in practice. Thus, it is very difficult to predict deterministically the onset of the
damaging phenomenon of localization in practical propulsion systems, in a manner that is useful to the
designers.

Can we then make any statement about the behavior of a mistuned system when knowing only
the dynamics of the tuned system? In this paper we answer this question by treating mistuning
stochastically rather than detenministically. Because mistuning is random and small in nature, a statistical
and perturbative approach is chosen to develop a compact measure of sensitivity. The sensitivity
formulation presented below is based on the singular behavior of the classical perturbation expansion of
the aeroelastic eigensolution of bladed disks when mode localization takes place.

DEVELOPMENT OF THE STOCHASTIC SENSITIVITY MEASURE

Aeroelastic Equations of Motion

The bladed disk is modeled as a coupled system of N blades. Each blade's dynamics is described
by a single in-vacuum (rotating) natural mode of vibration, say the nth natural mode. This simplified
representation assumes that the coupling between the natural modes of all blade is negligible.
Therefore, the rotor equations of motion fonn a s ystem of N ordinary differential equations, each of which
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j=1,...,N (4)

corresponds to an individual blade on the rotor. (Note that for the SSME turbopump turbine, which is
used as an example in this paper, we developed a general fonnulation and a computer program that allow
for interactions between various blade modes; however, we found that the blade natural frequencies for
the SSME turbopump are so Nvell separated that inter-mode coupling is insignificant; this justifies the
single-mode per blade assumption.)

For simplicity, we assume that the blades are coupled only aerodynamically, and that there is no
structural coupling of the blades through the disk or at the shrouds. Moreover, we are examining the
aeroelastic free vibration of the assembly, and thus include in our model only those aerodynamic forces
that are motion-dependent. The application of component mode analysis to the N-blade assembly yields
a set of N homogeneous, linear, ordinary differential equations in the modal amplitudes of the blades.
We look for motions such that all the blade coordinates oscillate with the same frequency and/or decay
or grow at the same rate. This yields the folloxving aeroelastic eigenvalue problem of order N:

[k 2M+ K- A(wa)] u = 0	 (1)

where u is the complex eigenvector of the blade modal amplitudes, M and K are the real N x N
generalized inertia and stiffness matrices, respectively, A is the complex aerodynamic matrix, which
depends on the assumed frequency, coa, and ^.' is the complex eigenvalue.

Since there is no structural coupling, the rotor mass and stiffness matrices are diagonal and of the
form M = I and K = diag(CO,',CO,',...,wN'), where the blade modes have been normalized -,vith a unit modal
mass, and w is the natural frequency of the jth blade (rotating in a vacuum) for the blade mode
considered. For a tuned assembl y the diagonal elements of K are identical and equal to coo', the nominal
blade frequency squared. For a mistuned rotor the individual blade frequencies are generally distinct and
the stiffness matrix is diagonal but not proportional to I.

The transformation of the aerod y namic influence coefficients between traveling wave coordinates
and individual blade, or physical coordinates is defined by

A = EAE '	 (2)

where A, the acrod}'namic matrix in traveling wave coordinates, is a diagonal matrix of complex elements

A l l A	 A * The unitary transformation matrix E is given by
^^	 e	 N

E = [el , •• , e. , .. , eNI

	
(3)

where

where R, is the interblade phase angle.
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For a tuned assembly, the matrix E diagonalizes the aeroelastic problem, Eq. (1). This means that
the eigenvectors of the system arc the columns of E, hence the aeroelastic ►node shapes of the tuned
assembly are the ej , j=1,...N, given by Eq. (4). For a motion in the jth mode all blades vibrate with equal

amplitudes but with a constant phase difference Pj between adjacent blades. We will refer to the modes

of the tuned assembly as constant interblade phase angle modes. Physically, these normal mode motions
are waves traveling through the assembly with a phase change a, at each blade. To each backward
traveling wave e, corresponds a forward traveling wave e.-j., which has the same number of (traveling)
nodal diameters. After diagonalization of Eq. (1) with the similarity transformation defined by E, the
aeroelastic eigenvalues of the tuned assembly are readily given by:

z2	 S
col = '4

J
-w 0	 j=1, ... , N	 (5)

For a mistuned assembly the constant interblade phase angle vectors e, do not uncouple the system
(1) and thus they are not the aeroelastic modes. A numerical or a perturbation solution of the aeroelastic
eigenvalue problem is then required. In this work, we assume small random frequency mistuning: the
mode shape of each blade is identical, the natural frequency of each blade is a small deviation from the
nominal blade frequency, and the frequencies for the individual blades are generated using random
numbers from a uniform probability distribution function.

Perturbation Analysis

The most natural perturbation procedure to study the dynamics of a mistuned assembly is one
that considers the tuned assembly as the unperturbed system and the blade mistuning as the small
perturbation. This approach, which we refer to as the classical perturbation method, yields easily
eigenvalue and eigenvector perturbations to any order in the mistuning (first- and second-order results are
given below). However, this classical approach is inherently flawed in cases of high sensitivity and
localization. This is because choosing the small mistuning as the perturbation parameter requires the
eigensolution of the mistuned assembly to be a small perturbation of that of the tuned assembly. Clearly,
this is not the case when the phenomenon of mode localization occurs, since in this case mistuning causes
qualitative (i.e., very large) alterations in the assembly's dynamics (for instance, compare Figure I and
Figure 3). Thus, the classical perturbation anal ysis cannot capture the drastic changes in the eigensolution
caused by small mistuning. As we discuss below, however, the mere fact that the technique fails in the
presence of localization can be used to predict the high sensitivity to mistuning.

Let us now explore the mechanisms of failure of the classical perturbation method. We denote
the unperturbed stiffness matrix of the tuned assembly by Ko and the perturbation matrix due to small
mistuning by 8K, where the latter is a diagonal matrix of mistunings in the squares of the individual blade

frequencies, 8ou 2 , such that 6w / o00 < < 1 for i=1,...,N. The stiffness matrix of the perturbed (mistuned)

assembly is therefore K = KO + 8K. Since the unperturbed system is the tuned system, the modes of the
unperturbed system are the constant interblade phase angle modes given by Eq. (4). Those of the

	

perturbed system call 	 expanded in a truncated asymptotic series as

	

?",, 8)"+ 8 ,X"	 (6)
i=1,	 ,N

u ; =e, +8u ; +b ui
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where SX? and Su p (respectively S z a,? and S zu, ) are first-order (respectively second- order) perturbation

terms in the small mistuning.

Applying perturbation theory to the eigenvalue problem," one can show that the first-order
perturbation of the eigenvalues is

S^ _ - 1 bwk 	(7)
Nk_,

We readily observe that for small mistuning this is always a small term. Hence the first-order eigenvalue
perturbation cannot reveal high sensitivity to mistuning. Moreover, all eigenvalues are shifted by an
identical amount and, for a mistuning pattern that averages to zero, the change in the eigenvalues equals
zero. Another interesting remark is that the perturbation of the eigenvalue squared is real, therefore
mistuning, to the first-order, does not affect the stability of the assembly (or very little). Here we reach
the seemingly contradictory conclusion that if the average mistuning throughout the rotor is not zero, i.e.,
if we stiffen or soften all the blades on the average, the flutter boundary remains unchanged! The
explanation of this paradox lies in the fact that the assumed frequency that was used for the aerodynamic
computations is then no longer valid. If the effect of mistuning with nonzero mean on flutter is sought,
the full mistuned eigenvalue problem must be solved in order to deternine the correct assumed frequency.
These remarks suggest that, although simple and cost-effective, perturbation mctliods must be used with
care in a design environment.

Turning to the second-order perturbation of the eigenvalues, we can write this perturbation as:

62X2	
" Iek^Ke,I'-	 'vIe,Ue,Iz	

r= 1	 N	 (8)z	 _
`	 z	 z -`

kx^ ^'o,— ^ok	 k=	 A' -Ak

where * denotes the complex conjugate and 1.1 the modulus of a complex quantity. In Eq. (8), the
numerator in the summation is a measure of the square of the mistuning (in the frequency squares), and
the denominator is the spread among the constant interblade phase angle aerodynamic coefficients.
(Equation (5) shows that this spread is simply the spread among the tuned eigenvalues.) For
turbomachinery in general, and the HPOTP turbopump in particular, these aerodynamic coefficients are
small because the unsteady aerodynamic forces are small compared to elastic and inertia forces, and
provide very weak coupling among the blades. Thus, even if mistuning is small, the numerators and
denominators in Eq. (8) may be of comparable magnitudes, in which case the second-order eigenvalue
perturbation is of the order of unity, not second order. The fact that eigenvalue perturbations become
large indicates the failure of the perturbation anal ysis and reveals the high sensitivity of the assembly
dynamics to mistuning. This suggests the use of second-order eigenvalue perturbations in defining a
sensitivity measure.

The first order eigenvector perturbation

" e,t*S Ke

k=, A - Ak
ks

(9)
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shows that the first-order aeroelastic mode shape perturbations behave similarly to the second-order
eigenvalue perturbations, i.e., the sensitivity of the eigenvectors is inversely proportional to the differences
in aerodynamic coefficients. This is consistent with the observed occurrence of mode localization in
Figure 3, where the drastic alteration of the mode shape from the tuned mode in Figure 1 is a direct
consequence of the high sensitivity to mistuning. Although these perturbation results cannot be used to
characterize the behavior of the mistuned assembly (e.g., localization), as they are qualitatively in error,
the failure of the perturbation analysis indicates high sensitivity to mistuning. However, note that the
classical perturbation analysis does not always fail. For example, if mistuning is extremely weak, e.g.,
0.001% for the SSME turbopuuip, the ratios in Eq. (8) may be sufficiently small for the perturbation
expression to be valid. This is also the case if the interblade coupling is strong, such that the aerodynamic
coefficients, and thus the denominators in Eq. (8) are not small. In these cases mistuning has a small
effect on the assembly's dynamics.

By utilizing these perturbation ideas, we are able to develop a sensitivity measure that will allow
the designer to predict, in a very, simple way, the effects of mistuning oil various aeroelastic modes.
Noting the close relationship between the first-order eigenvector perturbation and the second-order
eigenvalue perturbation, we derive a sensitivity measure based oil second-order eigenvalue perturbation
expression. Because mistuning is random in nature, a statistical approach is chosen to obtain a compact
measure of sensitivity. This measure allows us to predict mistuning effects essentially with a single scalar
for each mode. However, a possible drawback of this stochastic measure is that individual realizations
of mistuning patterns may result in dynamic behaviors much different from the average behavior predicted
by the sensitivity measure (for example, a "sinusoidal" mistuning pattern alters the dynamics much less
than a truly random pattern). We further note that the sensitivity measure defined below does not require
the mistuned system solution and thus is quite cost effective. Moreover, since the forced response of
mistuned assemblies consists of linear combination of responses in the free modes of vibration, the
sensitivity of the aeroelastic modes will provide useful information about that of the forced response.
Thus, this measure has the potential to become a valuable design tool.

The basic idea is to define the sensitivity of the system by taking the statistical average of the
second-order eigenvalue perturbation (where the mistunings are the perturbation parameters). This is
motivated by the findings above, which showed that the mechanism for high sensitivity, i.e., the closeness
of the tuned eigenvalues, is embedded in the second-order perturbation, while the first-order eigenvalue
perturbation always remains small. We rewrite Eq. (8) using the expression for the interblade phase angle
mode shapes, ej, given in Eq. (4). After some algebra, we obtain:

N

S 2 (^?) _ - 1	 1	 SwP +	 cos( N (i- k) (p- 9)^ SuoPSwy	 (10)
i A

	

N- k=	 -A p	 v.v	 ll

	

ks1	 k	 pmq

At this point we define the mistunings in the frequency squared, Sco p e , p=1,...,N, as independent and
identical random variables of mean zero and standard deviation, 6. This simply means that the blades
are chosen randomly from an ( ideally) infinite population. Next we take the statistical average, over the
random mistunings, of the second -order eigenvalue perturbation, given by Eq. ( 10). Denoting average
quantities by <•>, this yields
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<6 (?,2)> 	 N	 1	 a2 	 i = 1, ... N	 (11)
N k=i A,-A,

k#,

because < (60),2 ) 2> = a2 and, for p#q, < Sco,,&oq> =0.

Now consider the perturbation series of the ith cigenvalue in terms of mistuning, Eq. (6), and take
its statistical average. Since the first-order perturbation is proportional to mistuning, it averages to zero
and we obtain

N

<^,;> _ ^o, - I E	
I 

a2	 i= 1,	 N	 (12)
N k Ak ",

This shows that to the second order, the locus of the average of an eigenvalue versus the mistuning
standard deviation is a parabola. The curvature of this parabola determines the sensitivity of the
associated acroclastic mode to mistuning.	 We rewrite

<X l> = a, 2, + Sae 	 i= 1 , .. N	 (13)

where we have defined the stochastic sensitivity measure of the ith eigenmode to mistuning as

S; =- 1	 I	 i=1, ... N	 (14)
N k =^ Ak-A

We sav a mode features a low, or normal sensitivity when the expansion (13) is valid. This occurs when
the tern S;a2 is second-order and therefore when the sensitivity measure S, is of the order of unity. High
sensitivity in a mode occurs when S ;a2 is first-order or larger, implying the failure of the perturbation
analysis. This happens when Si is large.

In order to interpret results, it is useful to make our sensitivity measure dimensionless. This is

achieved first by expressing S; in terns of the dimensionless mistuning standard deviation e, where
e=a/wo e . The second step is to divide S i by a representative eigenvalue of the system, such that all
sensitivities arc referred to 1 rather than to the various 2. Here we choose to nondimensionalize S; by
the cigenvalue corresponding to the tuned blade frequency squared, -wo e (ideally we should divide by )102
given in Eq. (5) but this would result in a complicated expression for S; ; moreover, for small aerodynamic

coupling, typical of turbomachinery, these two normalizations are nearly equivalent, because all tuned

eigenvalues are close to each other). The selected nornialization yields the dimensionless sensitivity
measure:

_	 N
S; = N
	 I	 i= 1, ... , N	 (15)

N k Ak-A
kx,
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We observe readily that the sensitivity measure increases as the aerodynamic interblade coupling
decreases. Note that the number of blades has opposite effects on the sensitivity measure through the
factor 1/N and through the number of teens in the summation. Generally, the sensitivity measure
increases as the number of blades is increased.'

RESULTS AND DISCUSSION

Here we apply our stochastic sensitivity measure to the SSME HPOTP turbopump rotor and
investigate the effectiveness of this measure in predicting the occurrence of mode localization.

Figure 4 - Space Shuttle Main Engine High
Pressure Oxygen Turbopump Cross Section.

The SSME is a hydrogen-fueled liquid rocket
engine which generates 512,000 Ibf of thrust at full
power. Each rocket engine is fed by two high
pressure and two low pressure turbopumps. The high
pressure turbopu nips are driven by axial flow gas
turbines which arc powered by hydrogen-rich steam
generated in individual prebumers. The HPOTP
supplies the oxidizer to the combustion chamber. The
HPOTP gas turbine generates 30,000 hp at 28,000 rpm
with cacti blade transferring approximately 300 hp.
Figure 4 shows a cross-sectional view of the HPOTP
turbopump. The pump impellers, shaft, gas turbine,
preburner and the turbine blade coolant jet ring can be
seen in the figure. The blades in the first stage of the
turbine experienced frequent cracking in the shank
region.

In the present model, the inertia and stiffness
matrices, M and K, are obtained from a MSC/NASTRAN normal modes anal y sis of the HPOTP first-stage
turbine blade. This stage has 78 blades. The finite element model for MSC/NASTRAN was generated
by converting the original ANSYS model provided by the SSME contractor, Rocketdyne Division of
Rockwell International Corporation. The model consists of 10,014 nodal points and 7758 solid
hexahedron elements, as shown in Figure 5. The first three modes of this blade are well-separated: at
28000 rpm, mode 1 (bending) is at 4748 Hz, mode 2 (edgewise) at 9950 Hz and mode 3 (torsion) at
16580 Hz. An unsteady aerodynamic analysis reveals that aerodynamic forces introduce little coupling
among the three modes. Thus, the single-degree-of-freedom-per-blade theoretical model presented above
is suitable to the study of the motion of the blades on the rotor. The aeroelastic stability anal y sis of this
blade row was presented in a previous study. 18 Here we employ the same procedure in order to illustrate
the effectiveness of the sensitivity measure.

The aerodynamic matrix A is a fully populated complex matrix which is evaluated using a
linearized unsteady aerodynamic theory that accounts for the effects of camber, thickness and incidence.
Verdon's method" ," is employed to calculate the unsteady forces on the blades due to a particular natural
mode of motion for a (tuned) cascade of identical blades. This results in a traveling wave representation
of the aerodynamic forces for the tuned cascade. A detailed description of the unsteady force calculation
using this theory is given in references 18 and 21.

10



Figure 5 - Finite element model of the SSME HPOTP
turbine blade.

The sensitivity measure we derived
above is a complex number that characterizes the
sensitivity of both the frequency and damping of
a tuned modc to random mistuning. We illustrate
the effectiveness of the measure by considering
the real part of this complex number. We do not
focus on the imaginary part of the sensitivity
measure because the aerodynamic damping is
generally small and because we have consistently
observed that the sensitivity of the frequency is
the one that governs mistuning effects and the
occurrence of mode localization.' Also, unless
otherwise stated, the results we present are for
the second blade mode group, as this mode
group was shown to have the least damping18.

0.02
c

0.01

0

c
-0.01

a^

-0.02
1 8 15 22 29 36 43 50 57 64 71 78

Blade Number	 The sensitivity measure is validated by
correlating the magnitude of its real part with the

Figure 6 - The relative individual blade localization observed in the mode shapes. These
frequency mistuning distribution as a function of mode shapes are calculated using one random
blade number. The mistuning depicted is for 1% 111stuning distribution with various values of standard

standard deviation. 	 deviation. The mistuning distribution used for the
results is depicted in Figure 6. It was obtained by
generating random numbers having a uniforni

probability distribution between -E^3 and r-13, where e is the dimensionless standard deviation of the
blade stiffness mistuning. Although it would have been desirable to validate the sensitivity measure

against Monte Carlo simulations of the mode shapes (because S 1 is stochastic), such simulations are
almost impossible to perforni because of the difficulties involved in the tracking of eigenvalues and
eigenvectors as the mistuning distribution varies. Running Monte Carlo simulations without accurate
tracking is meaningless because then the mode shape localization is lost in the averaging process.

Figure 7 displays the variation of the real part of the sensitivity measure for the modes of the 78-
bladed rotor when these modes are sorted by increasing frequency. We first observe that the sensitivities
of all the modes are very large (much larger than I , note the scale). We also note that the largest
sensitivity corresponds to the frequency index 60 and that the smallest sensitivity corresponds to the
frequency index 26.



The two mode shapes of the bladed disk with
highest	 and	 lowest	 sensitivity	 are	 compared	 in 150o	 Max Sensitivity

Figure 8 for various values of mistuning.	 Each plot @	 1000	 Min Sensitivity
displays	 the	 amplitude	 of	 the	 78	 blades	 in	 the U soo
corresponding mode at a given level of mistuning. As ^_•
mistuning increases, the equal amplitude nature of the '	 °

Pammode shapes breaks down and both modes rapidly -500
display the tendency to localize. 	 For a mistuning of 26	 60

standard deviation e = 0.2% (unavoidable in practice),
-1000

1	 a	 15	 22	 29	 36	 43	 50	 57	 64	 71	 78
the character of the modes has changed drastically to
become severely localized to a relatively small group

Frequency Index

of blades, while for e = 0% the modes are as in Figure 7 - Real part of the sensitivity measure
Figure 1.	 This alteration is in full agreement with the for the aeroclastic modes in the second blade
large values of the sensitivity measure obtained for all mode group.	 The modes are sorted in order of
modes in Figure 7. Moreover, the mode with the least increasing frequency.
sensitivity, which is shown on the right in Figure 8,
displays somewhat less tendency to localize than the
mode predicted to be most sensitive, which is shown on the left.	 This is consistent with Figure 7.
Nevertheless, the difference in behavior between these two modes is not stark and could lead to the
conclusion that, although the sensitivity measure is effective in predicting mode localization, it does not
do very well at differentiating between the sensitivities of various modes in the same blade mode group.

In order to investigate the reason for this behavior, the results were further examined and it was
found that the apparently disappointing prediction by the sensitivity measure is due to the phenomenon
of mode switching, which is known to occur in systems with closely-spaced modes as a parameter (here
the mistuning) is varied. We first note that the sensitivity measure is a continuous function of the system
eigenvalues, which themselves depend continuously oft the unsteady aerodynamic coefficients. These
unsteady aerodynamic coefficients are also continuously dependent oil interblade phase angle (with
some exceptions when aerodynamic resonances occur). Hence the sensitivity measure ought to vary
relatively smoothly with the interblade phase angle. This is depicted in Figure 9, which displays the real
part of the sensitivity measure of the modes of the 78-bladed rotor as a function of the interblade phase
angle index. We note that the largest sensitivity corresponds to phase index I I and the smallest sensitivity
corresponds to the phase index 52. The frequency indices corresponding to these are 60 and 26
respectively, and their mode shapes are shown in Figure 8. Notice that although the sensitivity measure
is a smooth function of the interblade phase angle over most of the range, it changes extremely rapidly
at the point of maximum sensitivity, i. e., near phase index 11. Thus, sonic of the mistuned mode shapes
displayed in the left half of Figure 8 probably correspond to modes whose phase indices are close to the
phase index of the mode with maximum sensitivity, but whose sensitivity is much lower. This provides
an explanation for the behavior shown in the left half of Figure 8, as follows. For very small mistuning
of 0.01%, the mode shape features the onset of localization, which is consistent with the calculated highest
sensitivity measure for that mode. As mistuning increases to 0.02%, however, it is obvious that the mode
has become less sensitive to mistuning, this being due to a switching with a neighboring, less sensitive
mode. As mistuning keeps increasing, the onset of localization is thus governed by the sensitivity of the
switched mode, not any longer by the highest sensitivity of the original tuned mode of phase index 11.
This explains the apparently unsatisfactory prediction of localization by the sensitivity measure. To
swrimarize, the near discontinuity of the sensitivity function at the interblade phase index corresponding
to the highest sensitivity causes mode switching for very small mistuning values, and this results in the
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Figure 8 - Amplitudes (vertical axis) vs blade number (horizontal axis) for mode shapes having maximum

and minimum magnitude of sensitivity measure.
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apparent disappointing performance of the sensitivity measure in differentiating the tendencies for
localization in the two modes of Figure 8.

In order to further check whether the
sensitivity measure is a good predictor of mode
localization, we compared the modes having the
highest and lowest sensitivity amplitudes, but by
ignoring the mode whose sensitivity measure changes
abruptly, i.e., the mode with frequency index 60 and
phase index 11. The next most sensitive mode has the
interblade phase index 41 and the frequency index 4.
That is, we compare the modes with frequency indices
4 (marked H in Figure 9) and 26. This comparison is
shown in Figure 10. As is readily apparent, the modc
on the left localizes much more rapidly than that on
the right, which is in complete agreement with the
prediction made by the sensitivity measure. It is also
clear that no mode switching occurs in Figure 10,
except perhaps between e = 0.1% and 0.2%.
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Figure 9 - Real part of the sensitivity measure
as a function of interblade phase index, for the
second blade mode group.

We also examined the sensitivity to mistuning of the first group of modes of the SSME
turbopump. Recall that in the first cluster of 78 modes, each blade vibrates nearly in its first normal
mode, in this case a first bending mode. Here we are interested in determining whether our sensitivity
measure is able to predict the relative strength of mistuning effects for the first two blade mode groups.
Figure 11 displays the real part of the sensitivity measure for the first mode group versus the interblade
phase index. Comparing it with Figure 9 for the second group, we immediately observe that most modes
in the first group are more sensitive than those in the second group. This suggests that mode localization
occurs more rapidly in the first mode group than in the second, the kind of information which is important
to the designer. To confine this, the most sensitive mode shapes in each of the two blade mode groups
(frequency index 2 for the first group, bending, and 4 for the second group, edgewise) are compared in
Figure 12 for various mistuning values. Observe that the mode in group 1 becomes localized more rapidly
than that in group 2 as mistuning increases. This confines the validity of the sensitivity measure as a
practical tool for the prediction of mode localization.

Finally, to illustrate one practical usefulness of the sensitivity measure, we compared the
localization behavior of the above SSME rotor to that of a hypothetical rotor having blades with natural
frequencies ten times smaller, with all other parameters and aerodynamic forces unchanged. From Eq.
(15), we note that all sensitivities for the hypothetical rotor are 100 times smaller than for the SSME rotor.
To confine that the mode shapes of the hypothetical rotor are correspondingly less sensitive to mistuning,
we compare the mode shapes with the highest sensitivity for both rotors in Figure 13. Note that the
hypothetical rotor mode shape is not appreciably altered by mistuning levels which have significant effect
on the mode shape of the SSME rotor --- as predicted by the calculated sensitivities given in Figure 13.
Furthermore, the most sensitive mode shape of the hypotlictical rotor with 1% mistuning is almost
identical to the corresponding mode shape of the SSME rotor with 0.01% mistuning (a hundred times
smaller). This clearly illustrates the strong correlation between the sensitivity measure and the mistuned
rotor mode shapes, because the predicted sensitivity for the SSME rotor is exactly a hundred times more
than that of the hypothetical rotor.
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Figure 10 - Amplitudes (vertical axis) vs blade number (horizontal axis) for mode shapes having
maximum and minimum magnitude of sensitivity measure, when rapidly changing regions are ignored.
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Figure 11 - Real part of the Sensitivity Measure as a function of interblade phase index for blade mode
group 1.
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Figure 12 - Comparison of the most sensitive mode shapes from blade mode groups I and 2 (Amplitudes
on the vertical axis and blade number on the horizontal axis).
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Figure 13 - Comparison of the most sensitive mode shapes for the SSME HPOTP rotor and a hypothetical
rotor. (Amplitudes on the vertical axis and blade number on the horizontal axis).

CONCLUSIONS

A sensitivity measure that indicates the potential for the occurrence of mode localization in
practical turbonlachinery rotors is presented. This measure is derived by statistically averaging the second
order perturbation expression for the system eigenvalucs and appropriately non-dinlensionalizing the
resulting expression.

This measure is very inexpensive to compute compared to high-cost Monte Carlo simulations of
mistuned systems. Because it is based on statistical modeling of mistuning, it does not require knowledge
of the actual mistuning distribution. Thus, it is suitable for estimating the potential for the occurrence of
mode localization during the design phase.
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The effectiveness of the sensitivity measure is demonstrated by application to the first stage of
the Space Shuttle Main Engine's High Pressure Oxidizer Turbopump turbine. The sensitivity measure is
calculated for various modes and then is validated by comparison to the degree of localization obtained
by an exact calculation which uses a randoml y generated mistuning pattern. The predictions made by the
sensitivity measure correlate well with the localization observed. The sensitivity measure is thus found
to be an effective tool for predicting the potential for mode localization.
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